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Project Overview

Timeline Barriers

Start — September 2014
End — September 2015
60% Complete

Implement detailed component
thermal models and estimate the
model parameters

Assess impact of temperature on fuel
displacement

Budget Partners

FY15 $275K

Automotive manufacturer
MathWorks

Argonne: APRF, Mathematics and
Computer Science Division

NREL (A/C model)




Relevance
Temperature Has a Significant Impact on Electric Drive
Energy Consumption
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DOE VTO Effort to Develop and Validate Complete
Thermal Models Has Been Ongoing for Several Years
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In Order to Complete The Mission, ANL Has Been
Collaborating with Numerous Partners
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Relevance

The objective is to assess the impact of the thermal
conditions on energy consumption with entire vehicle

thermal management systems

= Energy consumption affected by cold and hot temperatures results in
lower fuel economy, shorter range and higher emissions.

= Vehicle thermal management system (VTMS) models are integrated to
evaluate the thermal impact under various vehicle thermal and driving
conditions.

= Further conditions including temperature, real-world driving cycles,
and powertrain technologies will be used to improve the evaluation
process with VTMS.



Approach

VTMS Development

Vehicle tests at APRF

.

Control and performance analysis

.

Driving Conditions

* Ambient temperature
e Driving cycles

e Starting conditions
 Technologies

* Fleet Distribution

Simulation techniques

* Large scale simulation process
* Database analysis
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Milestones

Develop Wheel Thermal
Model

Complete and Validate
Conv. Vehicle Model

Improve Thermal
Component Models with
Additional Test Data

Evaluate The Impact for
Different Powertrain Tech.

Evaluate The Impact with
Real World Conditions

Report/Paper




Technical Accomplishments
Standard Model Development Process
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Technical Accomplishments
Component Performances Developed Using Generic Processes

Engine performance analysis
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Engine efficiency decreases as the coolant temperature decreases.

e.g. Prius PHEV
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Technical Accomplishments
Vehicle Level Controls Analyzed
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Technical Accomplishments
Simulation Model Development

. Component model development
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Component level validation

Control analysis
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Technical Accomplishments

Wheel Thermal Model Developed
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Technical Accomplishments
Wheel Thermal Model Validated

Tread Area

Simulation model
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Technical Accomplishments
Conventional Vehicle Thermal Model Developed

O |=

Mechanical Torque

Starter Engine Accessory Convertor Gearbox Final drive wheel Chassis
Vehicle Information
Car 2012 Ford Fusion V6
Type 4 dr Sedan
Engine 3.0-liter V6 FFV
Battery Generator Compression ratio 10.3:1
Horsepower 240 hp @ 6,550 rpm (gasoline)
Torque 223 Ib.-ft. @ 4,300 rpm (gasoline)
1st 4.58:1
o= 2nd 2.96:1
3rd 1.91:1
Ath 1.44:1
+ Gear Ratio |5th 0.74:1
Electrical 6th 0.68:1
Accessory 7th B
8th -
Final Drive 3.20:1
Wet or Dry Clutch
HWY 20
. Label EPA
Ford Fusion Conv. tuel  |Urban 28
Economy |Combined 23
0 to 60 time [s] 7
Test weight 3744
a 33.84
2 Whi Dyno b -0.2066
GUltable |C 0.02372
Fuel Info
Fuel Name: Tier Il EEE HF437 Density: 0.74 [g/ml]
CWE: 0.8618 Net HV: 18344 [BTU/Ibm]
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Technical Accomplishments
Conventional Vehicle Model Developed

— Control Analysis

Upshifting _ Downshifting

pedal signal
=2 = =
pecal signal

Test data for Ford Fusion was
imported and analyzed for
control and performances

Performance analysis ™

Engine fuel consumption rate (kafs)

Engine Coolan! Temp (C)
4 ¥ 5 B 8 2 8

: Engine torque (Nm)
. . Engine speed (rad/s)
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Technical Accomplishments
Conventional Vehicle Model Validated

Engine Fuel Consumption (cumulative)
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Technical Accomplishments
Validated Thermal Models For Multiple Powertrains

* Conventional Vehicle — Ford Fusion ~ HEV & PHEV M)
* Extended Range Electric Vehicles (E-REV) — GM Volt w
* Hybrid Electric Vehicles (HEV) — Toyota Prius Hybrid

 Battery Electric Vehicles (BEV) — Ford Focus BEV %{@—@M

* Plug-In HEVs (PHEV) — Toyota Prius Plug-in Hybrid

Conventional

_\

Toyota Prius

Finaldrive ~ wheel

4 E-REV [

Ford Fusion

Electric Vehicle

Ford Focus BEV BB GM VOLT
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Technical Accomplishments
Models Validated within Test to Test Uncertainty
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Technical Accomplishments
Models Validated within Test to Test Uncertainty
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Technical Accomplishments
Thermal Impact On Energy Consumption (Conv. & HEV)
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Technical Accomplishments
Thermal Impact On Energy Consumption (PHEV & EV)
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Ongoing Work

Real-World Scenario with Thermal Conditions

ASSUMPTIONS
from multi-resources

Real World
Driving Cycles
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Multi-year Proposed Work Plan

Large Scale Energy Evaluation Process to Leverage Road-to-
Lab-to-Math (RLM)

Collaboration chart

| Traffic with other studies
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Summary

Testing results from both on-road and dynamometer testing demonstrate that
electrified vehicles are more affected by ambient temperature than
conventional vehicles.

This multi-year effort focuses on developing high fidelity vehicle thermal
models for a wide range of powertrain comparison to (1) quantify the impact
of temperature under a wide range of conditions in order to (2) mitigate it.

Argonne continues to develop and validate Vehicle Thermal Management
System (VTMS).

— Using vehicle test data from APRF, multiple vehicle models were developed and
validated

— Thermal component models continue to be improved.

— Conv., HEV, PHEV, E-REV, and EV models with VTMS are ready for energy analysis.
Energy consumption with VTMS will be evaluated by

— Using real-world conditions (RWDC, fleet distribution).

— Modeling new component technologies to help mitigate thermal impact

— Optimizing the energy management strategy considering the thermal behaviors.
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